Question Number	Answer		Mark
1(a)(i)	A = work done (by friction/drag/brakes on the car) Or decrease in kinetic energy (due to friction/drag/brakes)	(1)	1
1(a)(ii)	$\mathrm{B}=$ car is travelling at a (lower) constant velocity	(1)	1
1(b)	A quantity with both magnitude and direction Acceleration/momentum/force/lift/drag/thrust/weight	$\begin{aligned} & \mathbf{(1)} \\ & (1) \end{aligned}$	2
	Total for question		4

Question Number	Answer	Mark
2 (a)	$\begin{align*} & \text { Same (downwards) acceleration Or acceleration }=g \tag{1}\\ & \text { (accept constant acceleration) } \end{align*}$	1
2 (b)(i)	The ball is in contact with the floor (accept the ball bounces) (1)	1
2 (b) (ii)	Lower gradient Or the lines would be not be as steep (1)	1
2 (c)	Use of equation(s) of motion to find s Or use of distance = area under the graph Or use of GPE $=$ KE $\begin{equation*} s=1.1 \mathrm{~m}-1.4 \mathrm{~m} \tag{1} \end{equation*}$ $\begin{align*} & \frac{\text { Example of calculation }}{\left(4.7 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=\left(0 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}}+\left(2 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times s\right) \tag{1}\\ & s=1.13 \mathrm{~m} \end{align*}$	2
2(d)(i)	$\begin{align*} & \text { Use of } \mathrm{KE}=1 / 2 \mathrm{mv}^{2} \tag{1}\\ & \mathrm{KE}=1.1-1.3(\mathrm{~J}) \quad \text { (no ue) } \tag{1}\\ & \begin{array}{l} \text { Example of calculation } \\ \mathrm{KE}=1 / 2 \times 0.40 \mathrm{~kg} \times\left(2.4 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ =1.15 \mathrm{~J} \end{array} \end{align*}$	2
2(d)(ii)	Use of GPE = KE $\begin{equation*} h=0.27 \mathrm{~m}-0.32 \mathrm{~m} \quad(\text { ecf from } 16(\mathrm{~d})(\mathrm{i})) \tag{1} \end{equation*}$ (If area under graph or an equation of motion is used e.g. $h=\frac{(u+v) t}{2}$ or $v^{2}=u^{2}+2 a s$ only MP2 can be scored) Example of calculation $\begin{aligned} & h=\frac{1.2 \mathrm{~J}}{0.4 \mathrm{~kg} \times 9.81 \mathrm{Nkg}^{-1}} \\ & h=0.31 \mathrm{~m} \end{aligned}$	2
2(e)	(Elastic potential) energy transferred to thermal energy Or energy dissipated as heat	1
	Total for question	10

Question Number	Answer		Mark
4(a)	Use of $v=u+a t$ Or use of area under the graph (for either area) $v=3.2\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Example of calculation $\begin{aligned} & v=0+\left(2 \mathrm{~m} \mathrm{~s}^{-2} \times 1.6 \mathrm{~s}\right) \\ & v=3.2 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(1) (1)	2
4(b)	Diagonal line from 0 to $3.2 \mathrm{~m} \mathrm{~s}^{-1}$ over first 1.6 s (allow show that value or candidate's values for v and t from (a)) Region of constant, non-zero velocity (from 1.6 s to 3 s) Deceleration from candidate's maximum positive velocity to 0 over last 4 s	(1) (1) (1)	3
4(c)	Use of area under their graph in (b) Or use of correct equation(s) of motion Correct values substituted into a method for calculating the area under their graph e.g. trapezium method $3.2 \times \frac{1.4+7}{2}$ $s=13 \mathrm{~m} \quad$ (Full ecf from (b)) ($s=12.6 \mathrm{~m}$ using the show that value of $3 \mathrm{~m} \mathrm{~s}^{-1}$ for max velocity) Example of calculation $\begin{aligned} & s=\left(1 / 2 \times 3.2 \mathrm{~m} \mathrm{~s}^{-1} \times 1.6 \mathrm{~s}\right)+\left(3.2 \mathrm{~m} \mathrm{~s}^{-1} \times 1.4 \mathrm{~s}\right)+\left(1 / 2 \times 3.2 \mathrm{~m} \mathrm{~s}^{-1} \times 4 \mathrm{~s}\right) \\ & s=2.56+4.48+6.4=13.4 \mathrm{~m} \end{aligned}$	(1) (1) (1)	3
4(d)(i)	Use of $E_{\mathrm{k}}=1 / 2 m v^{2}$ $E_{\mathrm{k}}=0.61 \mathrm{~J} \quad(\mathrm{ecf}$ for velocity from (a)) (Show that value gives 0.54 J) Example of calculation $\begin{aligned} & E_{\mathrm{k}}=1 / 2 \times 0.12 \mathrm{~kg} \times\left(3.2 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ & E_{\mathrm{k}}=0.61 \mathrm{~J} \end{aligned}$	(1) (1)	2
4(d)(ii)	Use of power = energy/time $P=0.38 \mathrm{~W} \quad($ ecf from (d)(i)) ($P=0.34 \mathrm{~W}$ using the show that value of $v=3 \mathrm{~m} \mathrm{~s}^{-1}$) Example of calculation $\begin{aligned} P & =\frac{0.61 \mathrm{~J}}{1.6 \mathrm{~s}} \\ P & =0.38 \mathrm{~W} \end{aligned}$	(1) (1)	2
	Total for Question		12

Question Number	Answer		Mark
5(a)(i)	Use of gradient Velocity $=0.062\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ (accept $0.052-0.068$) Example of calculation	(1) (1)	2
5(a)(ii)	 Displacement starts and ends at 0 Straight, diagonal line of increasing displacement from $s=0$ Maximum displacement(s) of 0.2 m between times of 0.5 s and 1.25 s Dip in displacement near the middle of graph	(1) (1) (1) (1)	4
5(a)(iii)	0 ($\mathrm{m} \mathrm{s}^{-1}$), zero	(1)	
5(b)	Reduces uncertainties Or measurements more precise/accurate Max 2 No reaction time Can be paused/playback/rewound Can take a reading every frame Or more readings (in a given time) Allows values to be checked You can zoom in	(1) (1) (1) (1) (1) (1)	3
	Total for Question		10

